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ABSTRACT  
 

This report presents the findings behind the use of computational or in-silico 
methods to find therapeutic targets allows for the effective integration of the massive 
amounts of data currently available and the accurate prediction of the effectiveness of a 
given target molecule that could potentially inhibit the expression of the most common 
B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF) mutation. In order to find 
small chemical molecules that may prevent the expression of the most prevalent BRAF 
oncogenic mutation, machine-learning algorithms, such as the SVM (Support Vector 
Machine). An SVM model utilizes support vectors to adjust the threshold of the 
hyperplane to categorize data points and is widely used for classification models. 
Complemented with a Random Forest Classifier, the linear SVM model was able to use 
a dataset with 243 different compounds to achieve an average of 0.976 precision, 0.975 
recall, 0.966 accuracies, and a 0.962 area under the receiving operating characteristic 
curve across 50 independent iterations. 10 common features were present in all 50 
iterations, which provides computational evidence that these features directly affect the 
identification of the model. The model is not limited to strictly identifying compounds, as 
it affords the ability to determine if certain features truly affect the identification. This 
model may be used to conclude whether a QuaSAR descriptor truly correlates with the 
potential of a compound to inhibit the expression of the BRAF mutation. The model 
consistently achieved optimal performance with each iteration. 

Future work will implement an improved feature selection process to achieve 
perfect performance, a deeper analysis of feature importances, and use alternative 
classification models. 
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INTRODUCTION 
For our project, the problem that we would like to address has to do with the 

identification of small molecules that have the ability to inhibit the BRAF mutation 

V600E. The BRAF V600E mutation is a genetic alteration that is most common in 

papillary thyroid carcinomas (PTC), which are generally responsible for over 80 - 90% of 

all thyroid cancers (One example of cancer affected by the mutation). We chose this 

problem due to the benefits that can be obtained if we are able to make accurate 

identification of the molecules that play a role in the inhibition of the BRAF V600E 

mutation. Our study of this problem has, intrinsically, multiple purposes. Firstly, the real-

world relevance of the problem. Using machine learning algorithms, in bioinformatics, to 

quickly and accurately extract and analyze data from databases is on the frontier of 

developing knowledge. For example, a study done by our professor deals with the 

viability and legitimacy of using machine learning algorithms in the scope of 

bioinformatics. It compares the accuracy of two specific algorithms (SVM and 3D-QSAR 

to be exact) and developed a new statistical metric (EPP or Expected Predictive 

Performance) made specifically to measure the effectiveness of machine learning 

algorithms against each other regarding the datasets being used as input (Wesley et al., 

2016). At the end of the study, one of the disclaimers or retrospective thoughts was that 

there needs to continue to study or use machine learning(ML) algorithms in the field of 

bioinformatics. This is because the efficiency and effectiveness of ML algorithms is still 

not a topic well documented, it is most definitely more cost and time efficient than the 

traditional bioassay tests, but it has not undergone enough documented research to be 

widely applicable. Our team chose this problem, to add to the small but gradually 

growing pool of research done on ML algorithms in bioinformatics. 

A reason why this problem is important to be addressed is the fact that it can give 

us insight into how to prevent cancer before it reaches the terminal state. In the article 

“BRAF(V600E) mutation and the biology of papillary thyroid cancer”, (Frasca (2008)), 

the authors studied the correlation of BRAF-V600E and the features of PTCs. The 

paper found about 16 studies with a positive correlation to the overall amount of PTCs 

and 12 studies with no correlation to the overall amount of PTCs, with a grand total of 

2276 PTCs for the positive correlation and 1165 for the negative correlation. During the 
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study, they studied the association of BRAF-V600E to PTC in terms of the tumor, host, 

and environmental variables. Their sample of the patients involved all had gone through 

surgery for the thyroid during the years 2002-2005. After the confirmation for each of the 

patients involved in the study, tall cell variant papillary carcinomas (TCV-PTCs) were 

characterized by the papillae lined to be a single layer of tall cells. Finally, they 

measured the PTCs at 10mm or less than the maximum diameters that are considered 

micro-PTCs. The other method in this study was Laser Capture Microdissection (LCM). 

They washed the micro-PTCs with ethanol and rehydrated them in deionized water for 

the prep. Confirmation of the presence of the tumor was shown in the first and the last 

section of each section series. Another method in this study was Immunohistochemistry 

or IHC. This method involved the process of staining thyroid tissues with the avidin-

biotin-peroxidase complex(ABC) method. The sections were then treated with normal 

serum for 20 minutes followed by the application of monoclonal antibodies against 

MMP-2 or MMP-9. The reaction products were developed in a 3-diaminobenzidine 

tetrahydrochloride solution with 0.03% H2O2. With all of this data, the study made use 

of statistical analysis to go over all of the data found from the studies and obtained a 

result that there was a correlation between BRAF V600E mutation and the 

clinicopathological features of PTCs. 

If our machine learning algorithm is properly able to identify the molecules 

responsible for the inhibition of the mutation, we can use this algorithm to be able to 

make treatment methods that are able to inhibit the mutation with pinpoint accuracy. 

Solving this problem is extremely important due to the application that can be used if 

our algorithm can be used accurately. If we are able to identify the molecules that can 

be used to inhibit the mutations of BRAF V600E protein, we can potentially manipulate 

the algorithm to the point that it can identify molecules used for the inhibition of all other 

proteins, as long as we are able to fill in the different parameters needed. The 

significance of being able to identify proteins that cause or enable mutations (like BRAF 

V600E) is that it could lead to methods to prevent or treat said mutations better. 

According to a study (Elisei et al., 2008) the BRAF mutation in PTC patients has a 

statistically relevant correlation to being significant to its lethality, in the prone to fatal 

cases of PTC. Perhaps being able to identify the small chemical molecules that can 



 

 

Page 8 of 27 
 

inhibit the expression of such a troublesome protein may cause a lower mortality rate in 

the aforementioned population of PTC patients. The BRAF protein mutation is not only 

observable in PTC either, it is conducive to the development of a number of different 

cancers, including melanoma and colorectal cancer (Muling et al., 2013). So research 

on this singular mutation can lead to progress on multiple fronts of research within the 

field of cancer. This impact on the biological fronts of research, coupled with its potential 

impact on the bioinformatic front of research, are factors of significance to solving this 

problem. 

These potential benefits were only mentioned within the scope of the BRAF gene 

and its role in mutations that lead to cancer. Machine-learning algorithms that are able 

to identify small chemical molecules to inhibit gene expression would also be able to do 

the opposite. Assuming a mutation or disease would require the exhibition of a gene for 

treatment, this same research and method could be applied to that situation.  

 

BACKGROUND 
 The BRAF gene is located on chromosome 7 and is used as a good target for 

drug development. When mutated, this can cause the overgrowth of cells, leading to 

cancer developing as a result. Usually, the BRAF mutation would be a point mutation, 

specifically, having the “T” nucleotide change to an “A” nucleotide in a single-base pair 

shift. Numerous malignancies, including melanoma and colorectal cancer, have been 

shown to express mutations for this gene, notably those that happen at the 600th amino 

acid position. 

 The BRAF protein, which is expressed by the BRAF gene, is involved in the 

MAPk pathway that is used to help mediate cellular growth in response to growth 

signaling by the organism. This protein will interact with a GTPase molecule, RAS, to 

help activate other proteins and kinases inside the cell as the RAS molecule relays the 

signal to do so. Once activated, BRAF will activate or make other proteins/kinases and 

then go into the nucleus of the cell to perform different transcription factors. If there is a 

mutation, the transcription factors would recognize the perfect promoter for the gene to 
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produce proteins which would cause the cells to divide and grow. This would cause the 

BRAF to be hyperactive resulting in the activation of all the kinases in the cells and the 

cells turn into tumors. 

 Some of the known FDA-approved drugs that are known to treat cancers caused 

by the BRAFV600E have similar genetic variations to each other that would help 

including Bortezomib, Carfilzomib, Thalidomide, Lenalidomide, Dexamethasone, 

Pomalidomide, Vemurafenib, Dabrafenib, Sorafenib, and Encrafenib. Each of these 

drugs plays a certain role in the inhibition process of the BRAFV600E mutation. For 

example, Bortezomib and Carfilzomib are small-molecule antineoplastic proteasome 

inhibitors that can inhibit mutations such as BRAF V600E. Vemurafenib and Dabrafenib 

classify as Small Molecule Antineoplastic BRAF kinase inhibitors, which means that 

they were made for the sole purpose of being able to inhibit the BRAF V600E mutation 

which is extremely beneficial for the treatment of cancer that is caused by the mutation. 

 A comparable study to ours is the study done in 2016 by Wesley et al. The 

BRAF-V600 gene is analyzed by machine learning algorithms to find inhibitors of it, but 

this is not the sole focus of the study. The study's goal is to take the predictive data 

done on the inhibitors of the BRAF-V600 gene and HIV integrase and then compare the 

data to find a statistical measure to help assess the goodness of machine learning 

algorithms.  There were differences and similarities between our analysis of the BRAF-

V600 gene, on a more material-based scope our software and data sets used are 

different. The scikit sklearn SVM classifier version used in the prior study is 0.17.1, our 

current version is 1.4.1, and the python version previously used was 2.7.3 compared to 

our current 3.10.7. In terms of methodology, the comparative study had multiple 

methods of analyses using the two ML algorithms it used (SVM and 3D-QSAR), it has a 

“Best Possible Model” approach where each algorithm would simply have its descriptors 

or hyperparameters tuned to provide for maximum accuracy(Wesley et al., 2016). It also 

contained a “Constrained to MOE Descriptors” that restricted the range of the 

hyperparameters of the SVM model to match the smaller set of hyperparameters 

available in the 3D-QSAR algorithm. Our study will not need a restriction on the 

descriptors of our singular SVM model, our study will focus more heavily on the fine-
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tuning of the SVM hyperparameters rather than their comparison to another ML 

algorithm.  

A support vector machine (SVM) is a classification model that utilizes 

hyperplanes and support vectors to classify data points. The hyperplane serves as a 

strict boundary between the two classifications, positive and negative. The support 

vectors are data points that lie relatively close to the hyperplane and serve as an aid to 

the position and orientation of the hyperplane. The kernel hyperparameter optimizes the 

hyperplane to best separate the data points. Possible kernels include linear, polynomial, 

and radial. The initial implementation of the SVM model utilized the entire provided 

dataset and had no hyperparameter optimization. This model was built on Python as it 

offers multiple modules to assist in feature selection, constructing the model, and 

evaluating the identifications. Various system performance metrics are used depending 

on the machine learning model type. The basic performance metrics used most 

commonly are precision, recall, f1-score, accuracy, and the receiving operating 

characteristic (ROC). Precision assesses the number of compounds that are truly 

positive, with respect to the number of compounds that were identified by the model as 

positive. Recall evaluates the number of compounds that are truly positive, with respect 

to all classifications from the model. Because there exists a tradeoff between precision 

and recall, a consolidated metric called the f1-score was introduced. The f1-score is a 

single metric that balances the precision and recall metrics. Accuracy calculates the 

number of classifications that were identified correctly, with respect to all instances. The 

ROC is a graphical representation that displays the true positive rate with respect to the 

false positive rate. The metric used to evaluate the ROC curve is the area under the 

curve (AUC-ROC).  

The data set used in the previous study contained 303 compounds of which 243 

were used as a training set and 60 were used as a test set. We have a dataset of 243 

compounds in which we plan to use an 80/20 training/testing split. The reasoning for the 

narrowed dataset of the prior study is to achieve a higher degree of accuracy as well as 

a better relation to the competing ML algorithm because the competing ML algorithm 

needed a certain type of data. 
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DATA COLLECTED / ACCESSED 
For the SVM model, a significant amount of data was required to properly train 

the model, with a wide range of features. Most data points were collected from 

PubChem, a commonly used database that contains seamlessly accessible information 

about chemical compounds. This includes data from the atom count, and density, to 

various scoring metrics. The dataset used was provided by Dr. Leonard Wesley as a 

comma-separated values (CSV) file. This dataset contains 243 unique chemical 

compounds that have the potential to inhibit the BRAF V600E mutation. Each 

compound has 356 different QuaSAR descriptors. The “Class” column is a binary 

feature that denotes “0” as a compound that does not have the potential to inhibit the 

mutation and vice versa for “1”. The amount of data provided is sufficient to create a 

model using an 80/20 training-testing sample split. Using Python and the Pandas 

module, the CSV file containing the dataset is initialized in a Pandas data frame.  

Non-programmers were tasked to identify genetic variations of different FDA-

approved small molecule drugs that hold an important role in the inhibition of BRAF 

V600E mutation. For this portion, the main database that we made use of was PDR 

(Prescriber’s Digital Reference). This database provided us with great deals of data on 

particular drugs. For our research purpose and due to the massive amount of data that 

was shown through this database, we picked specific bits of data from the database to 

better be able to organize and comprehend our research. First, we got the SMILES 

Annotation of the drug molecule that we were researching. This provided us with a 

relative visual representation of what molecules were in our molecule. We could use this 

data to compare different drug molecules to see if there was a pattern to observe for 

drugs involved in the inhibition of BRAF V600E mutation. Next, we recorded the Class 

of the molecule. This was an overall representation of the drug's purpose. Some of the 

drugs in our list targeted certain molecules, while other drugs targeted specific 

mutations. We then recorded the Mechanism of Action of each and every drug. This 

provided us with a detailed explanation of how the drug was able to identify and attack 

its target. It gave us insight into its overall procedure and mechanism. Finally, we 
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recorded the pharmacokinetics of each of the drugs researched. This, like the 

Mechanism of Action, provided us with a smaller and more targeted approach of the 

overall mechanism of the drug and its movement in the body once consumed. 

 

APPROACH AND METHOD 

The objective of this project is to engineer a machine-learning model that 

accurately identifies small molecules that have the potential to inhibit the expression of 

the most common BRAF oncogenic mutation and to identify which small molecule drugs 

would have the most effect on the BRAF V600E mutation. With the information obtained 

from various databases on drugs with the potential to inhibit BRAF V600E mutation, the 

machine learning model would use the list of drugs researched to obtain which sets of 

drugs would have the most impact on the mutation. Initially, the four members involved 

in this project were split into pairs based on expertise. The members who specialized in 

Biology were in one pair, and the members who specialized in Computer Science were 

in another pair. The objective of the Biology-focused pair was to research and identify 

genetic variations for which the FDA-approved drugs can address cancers that are 

caused by BRAF-V600E mutations. Using the information obtained, the Computer 

Science-focused pair implemented an SVM model to identify which compounds have 

the potential to inhibit the expression of the BRAF mutation. 

The objective of the support vector machine was to identify which compounds 

have the ability to inhibit the BRAF V600E mutation and to programmatically determine 

which attributes affect the identification. The provided dataset consisting of various 

compounds and attributes retrieved from PubChem was used to evaluate the model. 

Python 3.10 was the language used to implement the model. Along with modules 

available from the Python Standard Library, Scikit-Learn and MatPlotLib were used. 

Scikit-Learn provides scripts to construct the model and MatPlotLib provides an avenue 

to display results. 
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The initial phase was to import and optimize the provided dataset. All compounds 

with missing features were removed from the dataset. Compounds with missing 

attributes yield inaccurate results when determining the features that impacted the 

classification. After all of the necessary compounds were removed, all features with an 

unknown data type were encoded categorically. As the minimally optimized dataset was 

established, it was split into features and targets. The ‘Class’ column in the dataset is 

the only target in this model. Recall that the “Class” column is a binary feature that 

denotes “0” as a compound that does not have the potential to inhibit the mutation and 

vice versa for “1”. The rest of the columns were features that potentially impacted the 

target. To further optimize the dataset, all features with constant or quasi-constant 

values were removed. 

The next phase was to determine the features that impacted the target the most 

during the execution. A Random Forest Classifier was used to determine the most 

important features. The most important features returned from the Random Forest 

Classifier were the features used in the feature dataset. All other features were 

removed. Note that the most important features may differ with each iteration. The 

feature and target datasets were then divided into an 80/20 train-test split. In other 

words, 80% of randomly selected features and targets were used for training the model, 

and the remaining 20% were used to test/validate the model. 

As the dataset preparation was finalized, the SVM model was engineered. A 

support vector classifier (SVC) was used to identify each compound. The default kernel 

for this classifier was a radial basis function (RBF). Using the SVC, along with the 

training features and targets, the classifier was fitted. The testing features were used 

with the fitted classifier to identify the remaining compounds. The initial SVM model had 

the following optimizations of the four hyperparameters: 

➢ Number of iterations: 5 

➢ Number of features: 200 

➢ Variance threshold: 0.005 

➢ Kernel type: RBF 
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The number of iterations determines the number of times the model is to be 

executed. With the sacrifice of time, the higher the number of iterations, the more 

accurate the performance results will be. The number of features details the number of 

important features established from the Random Forest Classifier to be used. In this 

case, the 200 most important features were used. The variance threshold sets a 

restriction to the minimum variance for each feature. The kernel type is simply the 

kernel function used by the SVM to classify the data points. 

The optimal hyperparameter tuning was determined through a sequential testing 

process. Records of performance at this stage are found in Appendix A. First, the best 

kernel type was found. To find the most optimal kernel type, 5 iterations of the model 

(using 200 features and a 0.005 variance threshold) were executed for each of the four 

valid kernel types: RBF, linear, polynomial, and Sigmoid. The linear kernel type yielded 

the highest average f1-score and accuracy (refer to Table A1). Next, the variance 

threshold was determined. Using a linear kernel and 200 features, the model was 

executed 5 times across 6 different variance thresholds: 0.0, 0.001, 0.01, 0.1, 1, and 10. 

The variance threshold that yielded the highest average f1-score and accuracy was 

0.001 (refer to Table A2). Finally, the optimal number of important features was 

evaluated. The model with a linear kernel and a 0.001 variance threshold was executed 

across 5 iterations for 5 different numbers of features to use: 200, 150, 100, 50, and 10. 

10 features yielded the highest average f1-score and accuracy (refer to Table A3), but 

this was due to overfitting. As a result, 50 features were decided to be the number of 

features to use with each iteration. The model is to be executed multiple times; thus, a 

relatively high number of iterations was required to yield the most accurate performance 

metrics. The number of iterations chosen was 50. The hyperparameters subsequent to 

optimization have the following values: 

➢ Number of iterations: 50 

➢ Number of features: 50 

➢ Variance threshold: 0.001 

➢ Kernel type: linear 
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The performance of each iteration of the model was recorded using precision, 

recall, accuracy, and AUC-ROC. Precision assesses the ratio of compounds that the 

model correctly identified as inhibiting the BRAF V600E mutation, with respect to all 

compounds that were identified by the model to inhibit the BRAF V600E mutation. 

Recall evaluates the ratio of compounds that the model correctly identified as inhibiting 

BRAF V600E mutation, with respect to all compounds identified by the model. Accuracy 

determines the ratio of compounds that were identified by the model to inhibit the BRAF 

V600E mutation, with respect to all identified compounds. The ROC curve graphically 

represents the false positive rate (FPR), with respect to the true positive rate (TPR). The 

FPR represents the ratio of compounds that were incorrectly identified to inhibit the 

BRAF V600E mutation, with respect to all compounds that truly do not inhibit the BRAF 

V600E mutation. The TPR represents the ratio of compounds that were correctly 

identified to inhibit the BRAF V600E mutation, with respect to all compounds that truly 

do not inhibit the BRAF V600E mutation. The AUC-ROC evaluates the ability of the 

model to differentiate between the two classifications. Along with the performance, the 

features used in each iteration were recorded. After all of the iterations were executed 

successfully, the performance of the model across all iterations was evaluated by taking 

the average precision, recall, accuracy, and AUC-ROC. The higher the performance 

metrics were, the better the model was performing. Additionally, a set of features that 

were used in all iterations was recorded. These features were the most common ones 

to affect the classification.  

 

EVALUATION OF RESULTS 

The model was executed 50 times, with each iteration using 50 features, a 0.001 

variance threshold, and a linear kernel type. Out of the 50 iterations, 6 iterations 

achieved a perfect performance (Iterations 2, 3, 13, 29, 37, and 44). A perfect 

performance is described by having precision, recall, accuracy, and AUC-ROC of 

exactly 1.0. Figure 1 displays the ROC curve of Iteration 2, one of the six perfectly 

performing iterations. Iteration 1 had the lowest precision, accuracy, and AUC-ROC of 
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approximately 0.886, 0.917, and 0.882, respectively. Iteration 11 had the lowest recall of 

approximately 0.914. Iteration 1 was established as the iteration with the lowest 

performance. Figure 2 displays the ROC curve of Iteration 1, the lowest-performing 

iteration. 

Figure 1: ROC of Iteration 2.  Figure 2: ROC of Iteration 1. 

 

Nevertheless, the performance of the model across all 50 iterations yielded an 

optimal performance. The performance of all consolidated iterations had an 

approximate average precision of 0.976, recall of 0.975, the accuracy of 0.966, and 

AUC-ROC of 0.962. Table 1 contains the approximate performance of the highest-

performing iteration, lowest-performing iteration, and the average performance across 

all 50 iterations. Appendix B provides a visualization of the precision, recall, accuracy, 

and AUC-ROC of all iterations. 

Table 1: Highest, lowest, and average performance of the model. 

  Iteration Precision Recall Accuracy AUC-ROC 

Highest-Performing 
Iteration 

2 1.000 1.000 1.000 1.000 

Lowest-Performing 
Iteration 

1 0.886 1.000 0.917 0.882 
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Average 
Performance 

Uses all 50 
iterations 

0.976 0.975 0.966 0.962 

The average precision concludes that 97.6% of all compounds that the model 

identified as inhibiting the BRAF V600E mutation are correct. The average recall 

establishes that 97.5% of all compounds were correctly identified as inhibiting the BRAF 

V600E mutation. The average accuracy proves that the model correctly identifies 96.6% 

of all compounds. The average AUC-ROC means that there is approximately a 96.2% 

chance that the model will be able to distinguish between the two identifications 

successfully.  

The features present in all 50 iterations were: AM1_LUMO, E_ang, 

GCUT_PEOE_1, GCUT_PEOE_3, GCUT_SMR_3, MNDO_LUMO, PEOE_VSA-4, 

PM3_LUMO, SlogP_VSA5, and logS. Table 2 details the QuaSAR descriptors of the 

said features. 

Table 2: QuaSAR descriptors of features. 

Feature Description 

AM1_LUMO The energy (eV) of the Lowest Unoccupied Molecular 

Orbital is calculated using the AM1 Hamiltonian [MOPAC]. 

E_ang Angle bends potential energy. 

GCUT_PEOE_1 & 3 The GCUT descriptors are calculated from the eigenvalues 

of a modified graph distance adjacency matrix. Each ij entry 

of the adjacency matrix takes the value 1/sqr(dij) where dij 

is the (modified) graph distance between atoms i and j. The 

diagonal takes the value of the PEOE partial charges. The 

resulting eigenvalues are sorted and the smallest, 1/3-ile, 

2/3-ile, and largest eigenvalues are reported. 

GCUT_SMR_3 The GCUT descriptors use the atomic contribution to molar 

refractivity (using the Wildman and Crippen SMR method) 
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instead of partial charge. 

MNDO_LUMO The energy (eV) of the Lowest Unoccupied Molecular 

Orbital is calculated using the MNDO Hamiltonian 

[MOPAC]. 

PEOE_VSA-4 Sum of vi where qi is in the range [-0.25,-0.20).* 

PM3_LUMO The energy (eV) of the Lowest Unoccupied Molecular 

Orbital is calculated using the PM3 Hamiltonian [MOPAC]. 

SlogP_VSA5 Sum of vi such that Li is in (0.15,0.20].** 

logS Log of the aqueous solubility (mol/L). This property is 

calculated from an atom contribution linear atom type model 

[Hou 2004] with r2 = 0.90, ~1,200 molecules. 

 

*PEOE. The Partial Equalization of Orbital Electronegativities (PEOE) method of calculating atomic partial 

charges [Gasteiger 1980] is a method in which charge is transferred between bonded atoms until 

equilibrium. To guarantee convergence, the amount of charge transferred at each iteration is damped 

with an exponentially decreasing scale factor. Let qi denote the partial charge of atom i as defined above. 

Let vi be the van der Waals surface area (Å2) of atom i (as calculated by a connection table 

approximation)(CCGI, 2008) 

**SlogP. Log of the octanol/water partition coefficient (including implicit hydrogens). This property is an 

atomic contribution model [Crippen 1999] that calculates logP from the given structure; i.e., the correct 

protonation state (washed structures). Results may vary from the logP(o/w) descriptor. The training set for 

SlogP was ~7000 structures.The Subdivided Surface Areas are descriptors based on an approximate 

accessible van der Waals surface area (in Å2) calculation for each atom, vi along with some other atomic 

property, pi. The vi are calculated using a connection table approximation. Each descriptor in a series is 

defined to be the sum of the vi over all atoms i such that pi is in a specified range (a,b).Li denotes the 

contribution to logP(o/w) for atom i as calculated in the SlogP descriptor(CCGI, 2008) 
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Table 3: BRAF Inhibitor Drugs 

 

 
 

CONCLUSION AND DISCUSSION 

 Taking into consideration the given data set only contained small chemical 

molecules that had potential to inhibit the BRAF V600E gene, the SVM model was able 

to quickly and accurately narrow down the dataset to those molecules that will inhibit the 

targeted gene along with the most significant traits of the molecules. The SVM model, 

once tuned, was able to achieve an average precision of 97.6%, recall of 97.5%, and 

accuracy of 96.6%. These percentages lend statistical significance to the results of the 
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model, as they exemplify the small possibilities of false positives, negatives, and 

erroneous data. These results can also be achieved within minutes of running the 

model, this is taking into account the program running the input dataset through 50 

iterations. The dataset contained 243 small chemical molecules that had the potential to 

inhibit the targeted gene, this helped as all data was relevant and it is recommended 

that only relevant data should be run through a machine learning algorithm for 

efficiency’s sake. These 243 molecules contained 356 descriptors that were used as 

data points for the SVM model.  

The SVM model takes four parameters as input to determine how to analyze the 

given dataset. These four parameters can be sequentially tested to discern which gives 

the best results. This simple sequential testing and tuning of hyperparameters allow for 

a sizable dataset (243 rows of molecules with 356 columns of descriptors) to be 

analyzed in a succinct and concise manner. Along with the precision, recall, and 

accuracy statistics, the SVM model was also able to discern 10 out of the 356 

descriptors that were the most common among the small molecule compounds that 

were found to properly inhibit the BRAF V600E gene. Finding that over 50 iterations of a 

decent dataset 10 descriptors were found to be the most prevalent can be significant to 

know what properties of these small molecules are causing the inhibition of BRAF 

V600E. Correlation may not always be causation but it cannot be ignored in a scientific 

setting where statistics can prove coincidences are not mere coincidences. The 10 

descriptors found to be most common could shrink to an even narrower number given if 

more iterations were to be performed. Conducting further testing, with more iterations 

and perhaps even more data could narrow 10 to 5 descriptors and these descriptors 

could be used to accurately draw conclusions on why small molecule compounds are 

able to inhibit one of the most commonly found gene expressions that accompany a 

number of cancers. 

 To connect with the SVM model, we also were able to research some particular 

drugs from the PDR database to identify any patterns between small molecule drugs 

that can inhibit the BRAF V600E mutation. When going through the database, we found 

10 small molecule drugs that fit the purpose of BRAF mutation inhibition. These were 
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Bortezomib, Carfilzomib, Thalidomide, Lenalidomide, Dexamethasone, Pomalidomide, 

Vemurafenib, Dabrafenib, Sorafenib, and Encrafenib. When researching these drugs, 

we recorded the Smiles, Classes, and Pharmacokinetics. Each of these sections in the 

database provided us with relative information on patterns that can be observed 

between drugs that inhibit a particular mutation. With this, we hope to we can look up 

more drugs with the ability to inhibit the BRAF V600E mutation and make a database for 

it so that our SVM model would be able to provide more insight into whether the drugs 

in the database differ in terms of effectiveness for the inhibition of the mutation. 

 

FUTURE WORK 

 Possible future implementations to the presented model include improvements to 

feature selection, the use of multiple machine learning classification algorithms, and a 

more comprehensive analysis of the features selected. The current implementation of 

the SVM model derives feature importances through a Random Forest Classifier. 

However, this results in an average of 96% accuracy. As there is a causation 

relationship between the features and the target, it is possible to achieve perfect 

performance with each iteration. One potential future addition to the project is to use an 

optimized classifier to find features that consistently affect the identification. Moreover, 

along with improving the feature selection process, a detailed analysis may be 

accompanied by detailing an ordered list of the most and least impactful features. 

Another possible future implementation is to utilize alternate classification algorithms 

with the use of ensemble learning. K-Nearest Neighbors (KNN) and Decision Trees are 

among the most accurate machine-learning classification models. Ensemble learning 

allows the model to select the best-performing iteration. An SVM, KNN, and Decision 

Tree may be used in unison to find which features consistently appear to influence the 

identification 
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APPENDICES 
 

Appendix A: Initial SVM Optimization Performance Records 
 

The following tables contain the f1-score and accuracy of various different 
hyperparameter values, excluding the number of iterations. The testing vector format is 
established as <number of features, variance threshold, kernel type>.  

 

Table A1: Performance of various kernel types. Test vector: <200, 0.005, kernel type>. 
Linear kernel type was most optimal. 

Kernel F1-Score Accuracy 

RBF 0.8513758136020299 0.7416666666666666 

linear 0.9302733573156108 0.9041666666666666 

poly 0.8314568299317422 0.7125 

sigmoid 0.7379079111578196 0.5875 

 

Table A2: Performance of various variance thresholds: Test vector: <200, variance 
threshold, linear>. 0.001 variance threshold was most optimal. 

Variance Threshold F1-Score Accuracy 

0.0 0.9465678657815204 0.925 

0.001 0.953960484383661 0.9375 

0.01 0.8965079365079365 0.8666666666666666 

0.1 0.9281677347146925 0.9 

1 0.8945250607752107 0.8541666666666666 
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10 0.9228353299440887 0.8958333333333334 

 

 

 

Table A3: Performance of various numbers of features used. Test vector: <number of 
features, 0.001, linear>. 50 features to use was most optimal to prevent overfitting. 

Number of Features 
Used 

F1-Score Accuracy 

200 0.9531902224155745 0.9291666666666668 

150 0.9457908593525032 0.9166666666666667 

100 0.950539287545538 0.9333333333333332 

50 0.9713119327136199 0.9583333333333333 

10 0.9722348336594913 0.9583333333333333 

 

 

Appendix B: Performance of All 50 Model Iterations 
 

The figures below visualize the precision, recall, accuracy, and AUC-ROC of each of the 
50 iterations in the form of a graph. 

 

Figure B1: Precision of all 50 iterations. 
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Figure B2: Recall of all 50 iterations. 

 
 

Figure B3: Accuracy of all 50 iterations. 
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Figure B4: AUC-ROC of all 50 iterations. 

 


