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ABSTRACT

This report presents the findings behind the use of computational or in-silico
methods to find therapeutic targets allows for the effective integration of the massive
amounts of data currently available and the accurate prediction of the effectiveness of a
given target molecule that could potentially inhibit the expression of the most common
B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF) mutation. In order to find
small chemical molecules that may prevent the expression of the most prevalent BRAF
oncogenic mutation, machine-learning algorithms, such as the SVM (Support Vector
Machine). An SVM model utilizes support vectors to adjust the threshold of the
hyperplane to categorize data points and is widely used for classification models.
Complemented with a Random Forest Classifier, the linear SVM model was able to use
a dataset with 243 different compounds to achieve an average of 0.976 precision, 0.975
recall, 0.966 accuracies, and a 0.962 area under the receiving operating characteristic
curve across 50 independent iterations. 10 common features were present in all 50
iterations, which provides computational evidence that these features directly affect the
identification of the model. The model is not limited to strictly identifying compounds, as
it affords the ability to determine if certain features truly affect the identification. This
model may be used to conclude whether a QuaSAR descriptor truly correlates with the
potential of a compound to inhibit the expression of the BRAF mutation. The model
consistently achieved optimal performance with each iteration.

Future work will implement an improved feature selection process to achieve
perfect performance, a deeper analysis of feature importances, and use alternative
classification models.
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INTRODUCTION
For our project, the problem that we would like to address has to do with the

identification of small molecules that have the ability to inhibit the BRAF mutation
VG600E. The BRAF V600E mutation is a genetic alteration that is most common in
papillary thyroid carcinomas (PTC), which are generally responsible for over 80 - 90% of
all thyroid cancers (One example of cancer affected by the mutation). We chose this
problem due to the benefits that can be obtained if we are able to make accurate
identification of the molecules that play a role in the inhibition of the BRAF V600E
mutation. Our study of this problem has, intrinsically, multiple purposes. Firstly, the real-
world relevance of the problem. Using machine learning algorithms, in bioinformatics, to
quickly and accurately extract and analyze data from databases is on the frontier of
developing knowledge. For example, a study done by our professor deals with the
viability and legitimacy of using machine learning algorithms in the scope of
bioinformatics. It compares the accuracy of two specific algorithms (SVM and 3D-QSAR
to be exact) and developed a new statistical metric (EPP or Expected Predictive
Performance) made specifically to measure the effectiveness of machine learning
algorithms against each other regarding the datasets being used as input (Wesley et al.,
2016). At the end of the study, one of the disclaimers or retrospective thoughts was that
there needs to continue to study or use machine learning(ML) algorithms in the field of
bioinformatics. This is because the efficiency and effectiveness of ML algorithms is still
not a topic well documented, it is most definitely more cost and time efficient than the
traditional bioassay tests, but it has not undergone enough documented research to be
widely applicable. Our team chose this problem, to add to the small but gradually

growing pool of research done on ML algorithms in bioinformatics.

A reason why this problem is important to be addressed is the fact that it can give
us insight into how to prevent cancer before it reaches the terminal state. In the article
“‘BRAF(V600E) mutation and the biology of papillary thyroid cancer”, (Frasca (2008)),
the authors studied the correlation of BRAF-VG600E and the features of PTCs. The
paper found about 16 studies with a positive correlation to the overall amount of PTCs
and 12 studies with no correlation to the overall amount of PTCs, with a grand total of
2276 PTCs for the positive correlation and 1165 for the negative correlation. During the
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study, they studied the association of BRAF-V600E to PTC in terms of the tumor, host,
and environmental variables. Their sample of the patients involved all had gone through
surgery for the thyroid during the years 2002-2005. After the confirmation for each of the
patients involved in the study, tall cell variant papillary carcinomas (TCV-PTCs) were
characterized by the papillae lined to be a single layer of tall cells. Finally, they
measured the PTCs at 10mm or less than the maximum diameters that are considered
micro-PTCs. The other method in this study was Laser Capture Microdissection (LCM).
They washed the micro-PTCs with ethanol and rehydrated them in deionized water for
the prep. Confirmation of the presence of the tumor was shown in the first and the last
section of each section series. Another method in this study was Immunohistochemistry
or IHC. This method involved the process of staining thyroid tissues with the avidin-
biotin-peroxidase complex(ABC) method. The sections were then treated with normal
serum for 20 minutes followed by the application of monoclonal antibodies against
MMP-2 or MMP-9. The reaction products were developed in a 3-diaminobenzidine
tetrahydrochloride solution with 0.03% H202. With all of this data, the study made use
of statistical analysis to go over all of the data found from the studies and obtained a
result that there was a correlation between BRAF V600E mutation and the
clinicopathological features of PTCs.

If our machine learning algorithm is properly able to identify the molecules
responsible for the inhibition of the mutation, we can use this algorithm to be able to
make treatment methods that are able to inhibit the mutation with pinpoint accuracy.
Solving this problem is extremely important due to the application that can be used if
our algorithm can be used accurately. If we are able to identify the molecules that can
be used to inhibit the mutations of BRAF VG600E protein, we can potentially manipulate
the algorithm to the point that it can identify molecules used for the inhibition of all other
proteins, as long as we are able to fill in the different parameters needed. The
significance of being able to identify proteins that cause or enable mutations (like BRAF
V600E) is that it could lead to methods to prevent or treat said mutations better.
According to a study (Elisei et al., 2008) the BRAF mutation in PTC patients has a
statistically relevant correlation to being significant to its lethality, in the prone to fatal
cases of PTC. Perhaps being able to identify the small chemical molecules that can
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inhibit the expression of such a troublesome protein may cause a lower mortality rate in
the aforementioned population of PTC patients. The BRAF protein mutation is not only
observable in PTC either, it is conducive to the development of a number of different
cancers, including melanoma and colorectal cancer (Muling et al., 2013). So research
on this singular mutation can lead to progress on multiple fronts of research within the
field of cancer. This impact on the biological fronts of research, coupled with its potential
impact on the bioinformatic front of research, are factors of significance to solving this
problem.

These potential benefits were only mentioned within the scope of the BRAF gene
and its role in mutations that lead to cancer. Machine-learning algorithms that are able
to identify small chemical molecules to inhibit gene expression would also be able to do
the opposite. Assuming a mutation or disease would require the exhibition of a gene for
treatment, this same research and method could be applied to that situation.

BACKGROUND
The BRAF gene is located on chromosome 7 and is used as a good target for

drug development. When mutated, this can cause the overgrowth of cells, leading to
cancer developing as a result. Usually, the BRAF mutation would be a point mutation,
specifically, having the “T” nucleotide change to an “A” nucleotide in a single-base pair
shift. Numerous malignancies, including melanoma and colorectal cancer, have been
shown to express mutations for this gene, notably those that happen at the 600th amino
acid position.

The BRAF protein, which is expressed by the BRAF gene, is involved in the
MAPk pathway that is used to help mediate cellular growth in response to growth
signaling by the organism. This protein will interact with a GTPase molecule, RAS, to
help activate other proteins and kinases inside the cell as the RAS molecule relays the
signal to do so. Once activated, BRAF will activate or make other proteins/kinases and
then go into the nucleus of the cell to perform different transcription factors. If there is a
mutation, the transcription factors would recognize the perfect promoter for the gene to
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produce proteins which would cause the cells to divide and grow. This would cause the
BRAF to be hyperactive resulting in the activation of all the kinases in the cells and the

cells turn into tumors.

Some of the known FDA-approved drugs that are known to treat cancers caused
by the BRAFVG600E have similar genetic variations to each other that would help
including Bortezomib, Carfilzomib, Thalidomide, Lenalidomide, Dexamethasone,
Pomalidomide, Vemurafenib, Dabrafenib, Sorafenib, and Encrafenib. Each of these
drugs plays a certain role in the inhibition process of the BRAFVG00E mutation. For
example, Bortezomib and Carfilzomib are small-molecule antineoplastic proteasome
inhibitors that can inhibit mutations such as BRAF VG600OE. Vemurafenib and Dabrafenib
classify as Small Molecule Antineoplastic BRAF kinase inhibitors, which means that
they were made for the sole purpose of being able to inhibit the BRAF V600E mutation
which is extremely beneficial for the treatment of cancer that is caused by the mutation.

A comparable study to ours is the study done in 2016 by Wesley et al. The
BRAF-V600 gene is analyzed by machine learning algorithms to find inhibitors of it, but
this is not the sole focus of the study. The study's goal is to take the predictive data
done on the inhibitors of the BRAF-V600 gene and HIV integrase and then compare the
data to find a statistical measure to help assess the goodness of machine learning
algorithms. There were differences and similarities between our analysis of the BRAF-
V600 gene, on a more material-based scope our software and data sets used are
different. The scikit sklearn SVM classifier version used in the prior study is 0.17.1, our
current version is 1.4.1, and the python version previously used was 2.7.3 compared to
our current 3.10.7. In terms of methodology, the comparative study had multiple
methods of analyses using the two ML algorithms it used (SVM and 3D-QSAR), it has a
“Best Possible Model” approach where each algorithm would simply have its descriptors
or hyperparameters tuned to provide for maximum accuracy(Wesley et al., 2016). It also
contained a “Constrained to MOE Descriptors” that restricted the range of the
hyperparameters of the SVM model to match the smaller set of hyperparameters
available in the 3D-QSAR algorithm. Our study will not need a restriction on the
descriptors of our singular SVM model, our study will focus more heavily on the fine-
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tuning of the SVM hyperparameters rather than their comparison to another ML
algorithm.

A support vector machine (SVM) is a classification model that utilizes
hyperplanes and support vectors to classify data points. The hyperplane serves as a
strict boundary between the two classifications, positive and negative. The support
vectors are data points that lie relatively close to the hyperplane and serve as an aid to
the position and orientation of the hyperplane. The kernel hyperparameter optimizes the
hyperplane to best separate the data points. Possible kernels include linear, polynomial,
and radial. The initial implementation of the SVM model utilized the entire provided
dataset and had no hyperparameter optimization. This model was built on Python as it
offers multiple modules to assist in feature selection, constructing the model, and
evaluating the identifications. Various system performance metrics are used depending
on the machine learning model type. The basic performance metrics used most
commonly are precision, recall, f1-score, accuracy, and the receiving operating
characteristic (ROC). Precision assesses the number of compounds that are truly
positive, with respect to the number of compounds that were identified by the model as
positive. Recall evaluates the number of compounds that are truly positive, with respect
to all classifications from the model. Because there exists a tradeoff between precision
and recall, a consolidated metric called the f1-score was introduced. The f1-score is a
single metric that balances the precision and recall metrics. Accuracy calculates the
number of classifications that were identified correctly, with respect to all instances. The
ROC is a graphical representation that displays the true positive rate with respect to the
false positive rate. The metric used to evaluate the ROC curve is the area under the
curve (AUC-ROC).

The data set used in the previous study contained 303 compounds of which 243
were used as a training set and 60 were used as a test set. We have a dataset of 243
compounds in which we plan to use an 80/20 training/testing split. The reasoning for the
narrowed dataset of the prior study is to achieve a higher degree of accuracy as well as
a better relation to the competing ML algorithm because the competing ML algorithm
needed a certain type of data.
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DATA COLLECTED / ACCESSED
For the SVM model, a significant amount of data was required to properly train

the model, with a wide range of features. Most data points were collected from
PubChem, a commonly used database that contains seamlessly accessible information
about chemical compounds. This includes data from the atom count, and density, to
various scoring metrics. The dataset used was provided by Dr. Leonard Wesley as a
comma-separated values (CSV) file. This dataset contains 243 unique chemical
compounds that have the potential to inhibit the BRAF V600E mutation. Each
compound has 356 different QuaSAR descriptors. The “Class” column is a binary
feature that denotes “0” as a compound that does not have the potential to inhibit the
mutation and vice versa for “1”. The amount of data provided is sufficient to create a
model using an 80/20 training-testing sample split. Using Python and the Pandas
module, the CSV file containing the dataset is initialized in a Pandas data frame.

Non-programmers were tasked to identify genetic variations of different FDA-
approved small molecule drugs that hold an important role in the inhibition of BRAF
V600E mutation. For this portion, the main database that we made use of was PDR
(Prescriber’s Digital Reference). This database provided us with great deals of data on
particular drugs. For our research purpose and due to the massive amount of data that
was shown through this database, we picked specific bits of data from the database to
better be able to organize and comprehend our research. First, we got the SMILES
Annotation of the drug molecule that we were researching. This provided us with a
relative visual representation of what molecules were in our molecule. We could use this
data to compare different drug molecules to see if there was a pattern to observe for
drugs involved in the inhibition of BRAF V600E mutation. Next, we recorded the Class
of the molecule. This was an overall representation of the drug's purpose. Some of the
drugs in our list targeted certain molecules, while other drugs targeted specific
mutations. We then recorded the Mechanism of Action of each and every drug. This
provided us with a detailed explanation of how the drug was able to identify and attack

its target. It gave us insight into its overall procedure and mechanism. Finally, we
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recorded the pharmacokinetics of each of the drugs researched. This, like the
Mechanism of Action, provided us with a smaller and more targeted approach of the

overall mechanism of the drug and its movement in the body once consumed.

APPROACH AND METHOD

The objective of this project is to engineer a machine-learning model that
accurately identifies small molecules that have the potential to inhibit the expression of
the most common BRAF oncogenic mutation and to identify which small molecule drugs
would have the most effect on the BRAF V600E mutation. With the information obtained
from various databases on drugs with the potential to inhibit BRAF V600E mutation, the
machine learning model would use the list of drugs researched to obtain which sets of
drugs would have the most impact on the mutation. Initially, the four members involved
in this project were split into pairs based on expertise. The members who specialized in
Biology were in one pair, and the members who specialized in Computer Science were
in another pair. The objective of the Biology-focused pair was to research and identify
genetic variations for which the FDA-approved drugs can address cancers that are
caused by BRAF-V600E mutations. Using the information obtained, the Computer
Science-focused pair implemented an SVM model to identify which compounds have

the potential to inhibit the expression of the BRAF mutation.

The objective of the support vector machine was to identify which compounds
have the ability to inhibit the BRAF V600E mutation and to programmatically determine
which attributes affect the identification. The provided dataset consisting of various
compounds and attributes retrieved from PubChem was used to evaluate the model.
Python 3.10 was the language used to implement the model. Along with modules
available from the Python Standard Library, Scikit-Learn and MatPlotLib were used.
Scikit-Learn provides scripts to construct the model and MatPlotLib provides an avenue

to display results.
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The initial phase was to import and optimize the provided dataset. All compounds
with missing features were removed from the dataset. Compounds with missing
attributes yield inaccurate results when determining the features that impacted the
classification. After all of the necessary compounds were removed, all features with an
unknown data type were encoded categorically. As the minimally optimized dataset was
established, it was split into features and targets. The ‘Class’ column in the dataset is
the only target in this model. Recall that the “Class” column is a binary feature that
denotes “0” as a compound that does not have the potential to inhibit the mutation and
vice versa for “1”. The rest of the columns were features that potentially impacted the
target. To further optimize the dataset, all features with constant or quasi-constant

values were removed.

The next phase was to determine the features that impacted the target the most
during the execution. A Random Forest Classifier was used to determine the most
important features. The most important features returned from the Random Forest
Classifier were the features used in the feature dataset. All other features were
removed. Note that the most important features may differ with each iteration. The
feature and target datasets were then divided into an 80/20 train-test split. In other
words, 80% of randomly selected features and targets were used for training the model,
and the remaining 20% were used to test/validate the model.

As the dataset preparation was finalized, the SVM model was engineered. A
support vector classifier (SVC) was used to identify each compound. The default kernel
for this classifier was a radial basis function (RBF). Using the SVC, along with the
training features and targets, the classifier was fitted. The testing features were used
with the fitted classifier to identify the remaining compounds. The initial SVM model had
the following optimizations of the four hyperparameters:

Number of iterations: 5
Number of features: 200

>
>
> Variance threshold: 0.005
>

Kernel type: RBF
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The number of iterations determines the number of times the model is to be
executed. With the sacrifice of time, the higher the number of iterations, the more
accurate the performance results will be. The number of features details the number of
important features established from the Random Forest Classifier to be used. In this
case, the 200 most important features were used. The variance threshold sets a
restriction to the minimum variance for each feature. The kernel type is simply the

kernel function used by the SVM to classify the data points.

The optimal hyperparameter tuning was determined through a sequential testing
process. Records of performance at this stage are found in Appendix A. First, the best
kernel type was found. To find the most optimal kernel type, 5 iterations of the model
(using 200 features and a 0.005 variance threshold) were executed for each of the four
valid kernel types: RBF, linear, polynomial, and Sigmoid. The linear kernel type yielded
the highest average f1-score and accuracy (refer to Table A1). Next, the variance
threshold was determined. Using a linear kernel and 200 features, the model was
executed 5 times across 6 different variance thresholds: 0.0, 0.001, 0.01, 0.1, 1, and 10.
The variance threshold that yielded the highest average f1-score and accuracy was
0.001 (refer to Table A2). Finally, the optimal number of important features was
evaluated. The model with a linear kernel and a 0.001 variance threshold was executed
across 5 iterations for 5 different numbers of features to use: 200, 150, 100, 50, and 10.
10 features yielded the highest average f1-score and accuracy (refer to Table A3), but
this was due to overfitting. As a result, 50 features were decided to be the number of
features to use with each iteration. The model is to be executed multiple times; thus, a
relatively high number of iterations was required to yield the most accurate performance
metrics. The number of iterations chosen was 50. The hyperparameters subsequent to

optimization have the following values:

> Number of iterations: 50
> Number of features: 50
> Variance threshold: 0.001

> Kernel type: linear
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The performance of each iteration of the model was recorded using precision,
recall, accuracy, and AUC-ROC. Precision assesses the ratio of compounds that the
model correctly identified as inhibiting the BRAF V600E mutation, with respect to all
compounds that were identified by the model to inhibit the BRAF V600E mutation.
Recall evaluates the ratio of compounds that the model correctly identified as inhibiting
BRAF V600E mutation, with respect to all compounds identified by the model. Accuracy
determines the ratio of compounds that were identified by the model to inhibit the BRAF
VG600E mutation, with respect to all identified compounds. The ROC curve graphically
represents the false positive rate (FPR), with respect to the true positive rate (TPR). The
FPR represents the ratio of compounds that were incorrectly identified to inhibit the
BRAF V600E mutation, with respect to all compounds that truly do not inhibit the BRAF
V600E mutation. The TPR represents the ratio of compounds that were correctly
identified to inhibit the BRAF V600E mutation, with respect to all compounds that truly
do not inhibit the BRAF V600E mutation. The AUC-ROC evaluates the ability of the
model to differentiate between the two classifications. Along with the performance, the
features used in each iteration were recorded. After all of the iterations were executed
successfully, the performance of the model across all iterations was evaluated by taking
the average precision, recall, accuracy, and AUC-ROC. The higher the performance
metrics were, the better the model was performing. Additionally, a set of features that
were used in all iterations was recorded. These features were the most common ones

to affect the classification.

EVALUATION OF RESULTS

The model was executed 50 times, with each iteration using 50 features, a 0.001
variance threshold, and a linear kernel type. Out of the 50 iterations, 6 iterations
achieved a perfect performance (lterations 2, 3, 13, 29, 37, and 44). A perfect
performance is described by having precision, recall, accuracy, and AUC-ROC of
exactly 1.0. Figure 1 displays the ROC curve of Iteration 2, one of the six perfectly
performing iterations. Iteration 1 had the lowest precision, accuracy, and AUC-ROC of
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approximately 0.886, 0.917, and 0.882, respectively. Iteration 11 had the lowest recall of
approximately 0.914. Iteration 1 was established as the iteration with the lowest
performance. Figure 2 displays the ROC curve of Iteration 1, the lowest-performing

iteration.

Figure 1: ROC of Iteration 2. Figure 2: ROC of Iteration 1.

ROC-Curve ROC-Curve

True Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate

Nevertheless, the performance of the model across all 50 iterations yielded an
optimal performance. The performance of all consolidated iterations had an
approximate average precision of 0.976, recall of 0.975, the accuracy of 0.966, and
AUC-ROC of 0.962. Table 1 contains the approximate performance of the highest-
performing iteration, lowest-performing iteration, and the average performance across
all 50 iterations. Appendix B provides a visualization of the precision, recall, accuracy,
and AUC-ROC of all iterations.

Table 1: Highest, lowest, and average performance of the model.

Iteration Precision | Recall Accuracy | AUC-ROC
Highest-Performing | 2 1.000 1.000 1.000 1.000
Iteration
Lowest-Performing | 1 0.886 1.000 0.917 0.882
Iteration
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Average
Performance

Uses all 50 |1 0.976 0.975 0.966 0.962
iterations

The average precision concludes that 97.6% of all compounds that the model

identified as inhibiting the BRAF V600E mutation are correct. The average recall

establishes that 97.5% of all compounds were correctly identified as inhibiting the BRAF

V600E mutation. The average accuracy proves that the model correctly identifies 96.6%

of all compounds. The average AUC-ROC means that there is approximately a 96.2%

chance that the model will be able to distinguish between the two identifications

successfully.

The features present in all 50 iterations were: AM1_LUMO, E_ang,
GCUT_PEOE_1, GCUT_PEOE_3, GCUT_SMR_3, MNDO_LUMO, PEOE_VSA-4,
PM3_LUMO, SlogP_VSAS, and logS. Table 2 details the QuaSAR descriptors of the

said features.

Table 2: QuaSAR descriptors of features.

Feature Description
AM1_LUMO The energy (eV) of the Lowest Unoccupied Molecular
Orbital is calculated using the AM1 Hamiltonian [MOPAC].
E_ang Angle bends potential energy.

GCUT_PEOE_1 &3

The GCUT descriptors are calculated from the eigenvalues
of a modified graph distance adjacency matrix. Each ij entry
of the adjacency matrix takes the value 1/sqr(dij) where dij
is the (modified) graph distance between atoms i and j. The
diagonal takes the value of the PEOE partial charges. The
resulting eigenvalues are sorted and the smallest, 1/3-ile,
2/3-ile, and largest eigenvalues are reported.

GCUT_SMR _3

The GCUT descriptors use the atomic contribution to molar
refractivity (using the Wildman and Crippen SMR method)
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instead of partial charge.

MNDO_LUMO The energy (eV) of the Lowest Unoccupied Molecular
Orbital is calculated using the MNDO Hamiltonian
[MOPAC].
PEOE_VSA-4 Sum of vi where qi is in the range [-0.25,-0.20).*
PM3_LUMO The energy (eV) of the Lowest Unoccupied Molecular

Orbital is calculated using the PM3 Hamiltonian [MOPAC].

SlogP_VSAS5 Sum of vi such that Liis in (0.15,0.20].**

logS Log of the aqueous solubility (mol/L). This property is
calculated from an atom contribution linear atom type model
[Hou 2004] with r2 = 0.90, ~1,200 molecules.

*PECQE. The Partial Equalization of Orbital Electronegativities (PEOE) method of calculating atomic partial
charges [Gasteiger 1980] is a method in which charge is transferred between bonded atoms until
equilibrium. To guarantee convergence, the amount of charge transferred at each iteration is damped
with an exponentially decreasing scale factor. Let qi denote the partial charge of atom i as defined above.
Let vi be the van der Waals surface area (A2) of atom i (as calculated by a connection table
approximation)(CCGI, 2008)

**SlogP. Log of the octanol/water partition coefficient (including implicit hydrogens). This property is an
atomic contribution model [Crippen 1999] that calculates logP from the given structure; i.e., the correct
protonation state (washed structures). Results may vary from the logP(o/w) descriptor. The training set for
SlogP was ~7000 structures. The Subdivided Surface Areas are descriptors based on an approximate
accessible van der Waals surface area (in A2) calculation for each atom, vi along with some other atomic
property, pi. The vi are calculated using a connection table approximation. Each descriptor in a series is
defined to be the sum of the vi over all atoms i such that pi is in a specified range (a,b).Li denotes the

contribution to logP(o/w) for atom i as calculated in the SlogP descriptor(CCGI, 2008)
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Table 3: BRAF Inhibitor Drugs

DRUG

Bortezomib

Carfilzomib

Thalidomide

Lenalidomide

Dexamethasone

Pomalidomide

Vemurafenib

Dabrafenib

Sorafenib

Encorafenib

SMILES

B(IC@@H](CC(C)C)NC(=0)[C@@H](CC1=CC=
CC=C1)NC(=0)C2=NC=CN=C2)(0)O

CC(C)CIC@@HI(C(=0)[C@]1(CO1)C)NC(=0)[C

@H](CC2=CC=CC=C2)NC(=0)[C@H](CC(C)CN

C(=0)[C@H](CCC3=CC=CC=C3)NC(=0)CN4CC
occa

C1CC(=0)NC(=0)C1N2C(=0)C3=CC=C
©=C3C2=0

C1CC(=0)NC(=0)C1N2CC3=C(C2=0)C=CC=C3
N

CIC@@H]1C[C@HI2[C@@H]3CCC4=C
C(=0)C=C[C@@M}([C@I3([C@HI(C[C@@]2([C
@]1(C(=0)CO)O)C)O)F)C

C1CC(=0)NC(=0)C1N2CC3=C(C2=0)C
=CC=C3N

CCCS(=0)(=0)NC1=C(C(=C(C=C1)F)C(=0)C2=
CNC3=NC=C(C=C23)C4=CC=C(C=C4)CI)F

N/A

CNC(=0)C1=NC=CC(=C1)0C2=CC=C(
C=C2)NC(=0)NC3=CC(=C(C=C3)CI)C(F)(F)F

C[C@@H](CNC1=NC=CC(=N1)C2=CN(N=C2C3
=CC(=CC(=C3F)NS(=0)(=0)C)CI)C(C)C)NC(=0)
ocC

CONCLUSION AND DISCUSSION

CLASS

Small Molecule Antineoplastic Proteasome
Inhibitors used for the treatment of multiple
myeloma and mantle cell lymphoma

Small Molecule Antineoplastic Proteasome
Inhibitors used for the treatment of relapsed or
refractory multiple myeloma as a single-agent and
in combination with other anti-myeloma therapies

Agents of Leprosy, Immunomodulators,
Angiogenesis Inhibitors

Immunomodulators, Angiogenesis Inhibitors

Ophthalmological Corticosteroids
Respiratory Corticosteroids
Systemic Corticosteroids
Systemic Corticosteroids, Plain

Immunomodulators, Angiogenesis
Inhibitors

Small Molecule Antineoplastic BRAF kinase
inhibitors

Small Molecules Antineoplastic BRAF
kinase Inhibitors

Small Molecule Antineoplastic
Multikinase Inhibitors

Small Molecule Antineoplastic BRAF kinase
Inhibitors

Taking into consideration the given data set only contained small chemical
molecules that had potential to inhibit the BRAF V600E gene, the SVM model was able
to quickly and accurately narrow down the dataset to those molecules that will inhibit the

targeted gene along with the most significant traits of the molecules. The SVM model,

once tuned, was able to achieve an average precision of 97.6%, recall of 97.5%, and

accuracy of 96.6%. These percentages lend statistical significance to the results of the
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model, as they exemplify the small possibilities of false positives, negatives, and
erroneous data. These results can also be achieved within minutes of running the
model, this is taking into account the program running the input dataset through 50
iterations. The dataset contained 243 small chemical molecules that had the potential to
inhibit the targeted gene, this helped as all data was relevant and it is recommended
that only relevant data should be run through a machine learning algorithm for
efficiency’s sake. These 243 molecules contained 356 descriptors that were used as
data points for the SVM model.

The SVM model takes four parameters as input to determine how to analyze the
given dataset. These four parameters can be sequentially tested to discern which gives
the best results. This simple sequential testing and tuning of hyperparameters allow for
a sizable dataset (243 rows of molecules with 356 columns of descriptors) to be
analyzed in a succinct and concise manner. Along with the precision, recall, and
accuracy statistics, the SVM model was also able to discern 10 out of the 356
descriptors that were the most common among the small molecule compounds that
were found to properly inhibit the BRAF VG600OE gene. Finding that over 50 iterations of a
decent dataset 10 descriptors were found to be the most prevalent can be significant to
know what properties of these small molecules are causing the inhibition of BRAF
V600E. Correlation may not always be causation but it cannot be ignored in a scientific
setting where statistics can prove coincidences are not mere coincidences. The 10
descriptors found to be most common could shrink to an even narrower number given if
more iterations were to be performed. Conducting further testing, with more iterations
and perhaps even more data could narrow 10 to 5 descriptors and these descriptors
could be used to accurately draw conclusions on why small molecule compounds are
able to inhibit one of the most commonly found gene expressions that accompany a

number of cancers.

To connect with the SVM model, we also were able to research some particular
drugs from the PDR database to identify any patterns between small molecule drugs
that can inhibit the BRAF V600E mutation. When going through the database, we found
10 small molecule drugs that fit the purpose of BRAF mutation inhibition. These were
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Bortezomib, Carfilzomib, Thalidomide, Lenalidomide, Dexamethasone, Pomalidomide,
Vemurafenib, Dabrafenib, Sorafenib, and Encrafenib. When researching these drugs,
we recorded the Smiles, Classes, and Pharmacokinetics. Each of these sections in the
database provided us with relative information on patterns that can be observed
between drugs that inhibit a particular mutation. With this, we hope to we can look up
more drugs with the ability to inhibit the BRAF V600E mutation and make a database for
it so that our SVM model would be able to provide more insight into whether the drugs
in the database differ in terms of effectiveness for the inhibition of the mutation.

FUTURE WORK

Possible future implementations to the presented model include improvements to
feature selection, the use of multiple machine learning classification algorithms, and a
more comprehensive analysis of the features selected. The current implementation of
the SVM model derives feature importances through a Random Forest Classifier.
However, this results in an average of 96% accuracy. As there is a causation
relationship between the features and the target, it is possible to achieve perfect
performance with each iteration. One potential future addition to the project is to use an
optimized classifier to find features that consistently affect the identification. Moreover,
along with improving the feature selection process, a detailed analysis may be
accompanied by detailing an ordered list of the most and least impactful features.
Another possible future implementation is to utilize alternate classification algorithms
with the use of ensemble learning. K-Nearest Neighbors (KNN) and Decision Trees are
among the most accurate machine-learning classification models. Ensemble learning
allows the model to select the best-performing iteration. An SVM, KNN, and Decision
Tree may be used in unison to find which features consistently appear to influence the
identification
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APPENDICES

Appendix A: Initial SVM Optimization Performance Records

The following tables contain the f1-score and accuracy of various different
hyperparameter values, excluding the number of iterations. The testing vector format is
established as <number of features, variance threshold, kernel type>.

Table A1: Performance of various kernel types. Test vector: <200, 0.005, kernel type>.
Linear kernel type was most optimal.

Kernel F1-Score Accuracy

RBF 0.8513758136020299 | 0.7416666666666666

linear 0.9302733573156108 | 0.9041666666666666

poly 0.8314568299317422 | 0.7125

sigmoid 0.7379079111578196 | 0.5875

Table A2: Performance of various variance thresholds: Test vector: <200, variance
threshold, linear>. 0.001 variance threshold was most optimal.

Variance Threshold F1-Score Accuracy
0.0 0.9465678657815204 0.925
0.001 0.953960484383661 0.9375
0.01 0.8965079365079365 0.8666666666666666
0.1 0.9281677347146925 0.9
1 0.8945250607752107 0.8541666666666666
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10 0.9228353299440887 0.8958333333333334

Table A3: Performance of various numbers of features used. Test vector: <number of
features, 0.001, linear>. 50 features to use was most optimal to prevent overfitting.

Number of Features F1-Score Accuracy
Used
200 0.9531902224155745 0.9291666666666668
150 0.9457908593525032 0.9166666666666667
100 0.950539287545538 0.9333333333333332
50 0.9713119327136199 0.9583333333333333
10 0.9722348336594913 0.9583333333333333

Appendix B: Performance of All 50 Model Iterations

The figures below visualize the precision, recall, accuracy, and AUC-ROC of each of the
50 iterations in the form of a graph.

Figure B1: Precision of all 50 iterations.
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Figure B2: Recall of all 50 iterations.
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Figure B3: Accuracy of all 50 iterations.
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Figure B4: AUC-ROC of all 50 iterations.
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