Task Scheduling for AI Workloads

Deven Shah
Professor Mehrdad Nourai, CS575 A1, Boston University
Date of Submission: December 2, 2025

Abstract

The rapid growth of Al workloads has exposed limitations in traditional CPU and GPU scheduling. CPUs
provide fairness and responsiveness but struggle with parallelism and memory-intensive operations, while
GPUs deliver high-throughput execution yet rely on CPU coordination for tasks such as data
preprocessing and kernel management. Hybrid CPU-GPU scheduling addresses these challenges by
dynamically distributing tasks to leverage both CPU flexibility and GPU parallelism. This study evaluates
CPU-only, GPU-only, and hybrid approaches across benchmarks for workload scaling, composition,
resource constraints, and real-world Al scenario test suites. Results from experts and experimentation
show that hybrid scheduling dramatically improves throughput for compute-bound, parallel workloads
while maintaining high GPU utilization, though latency-sensitive inference tasks may incur slight
overhead. These findings underscore the importance of adaptive, workload-aware scheduling strategies
for hybrid Al architectures.

Keywords: Task Scheduling, Parallel Computing, Thread Management, Resource Allocation

1. Introduction

The rapid growth of artificial intelligence workloads has exposed limitations in traditional CPU and GPU
scheduling mechanisms. While CPU schedulers excel at balancing fairness and responsiveness for
general-purpose computing, they struggle to efficiently manage the massive parallelism and memory-
intensive operations characteristic of modern neural network training. Conversely, GPUs provide high-
throughput execution for parallelizable tasks through warp-level scheduling and specialized hardware
such as Tensor Cores, yet they rely on effective coordination with CPUs for tasks like data preprocessing,
kernel launching, and I/O management.

This paper also investigates the performance benefits and limitations of hybrid scheduling in Al
workloads. We evaluate CPU-only, GPU-only, and hybrid approaches using comprehensive benchmark
suites that test workload scaling, composition, resource constraints, and real-world Al scenarios, including
training, inference, research, and production environments. By grounding the analysis in detailed
experimental results, this study provides both practical insights and a foundation for designing next-
generation scheduling frameworks that can efficiently leverage heterogeneous CPU-GPU architectures
for AI workloads.

2. CPU Scheduling

CPU scheduling is a core function of any operating system, responsible for determining which process
runs on the processor at a given moment. Its main goals are to maximize CPU utilization, maintain system
responsiveness, and ensure fairness among processes. The scheduler selects processes from the ready
queue and assigns them to the CPU based on predefined policies. For general-purpose computing, this
approach balances interactive and batch workloads effectively. However, in compute-heavy environments
like Al model training, the sequential nature of CPU scheduling becomes a bottleneck. The following are
CPU scheduling algorithms commonly found throughout our everyday machines.

Round Robin scheduling allocates each process a fixed time slice and cycles through processes in order.
This ensures fairness but introduces frequent context switching, which adds overhead when dealing with
compute-bound tasks such as matrix multiplications. As illustrated in Figure 1, Al tasks repeatedly enter
the CPU queue, are executed for short time slices, and then preempted for the next task. This repeated
context switching causes long Al tasks to take significantly more time to complete reducing overall CPU
throughput.

Figure 1: Round Robin process under Al workload.

1——»| CPU Scheduler [——2—>| Task 1 starts ~3_>

AT Workload

11
Task 1 completes after multiple time slices Task 1 resumes next time slice —— 8.

Task 3 completes after multiple time slices

16—

Task 2 completes after multiple time slices

Shortest Job First (SJF) selects the process with the smallest estimated execution time next. While
efficient for predictable workloads, it performs poorly when task durations vary dynamically, as is
common in Al workloads where kernel execution times depend on model size and data complexity.

Priority Scheduling executes higher-priority processes first, which can be useful in latency-sensitive
applications but often leads to starvation for lower-priority tasks. Moreover, traditional CPU schedulers
are unaware of GPU-related dependencies and may delay essential data preprocessing tasks.

Multi-Level Feedback Queue (MLFQ) algorithms attempt to balance adaptability and fairness by
promoting or demoting processes across queues based on observed behavior. While MLFQ improves
responsiveness for diverse workloads, it still cannot manage the data and compute parallelism required for
neural network training efficiently.

3. GPU Scheduling

GPUs are built with thousands of lightweight cores grouped into Streaming Multiprocessors (SMs). Each
SM can execute many threads concurrently, allowing GPUs to perform a large number of arithmetic
operations in parallel, as shown in Figure 2. This architectural design is ideal for deep learning tasks,
where similar operations must be applied to large volumes of data simultaneously. As shown by Gebhart,
Johnson, et al. (2012), modern GPUs maintain a large number of active threads across SMs massively
improving performance-per-watt over CPU-based systems. Unlike CPUs that minimize latency for single-
threaded tasks, GPUs maximize throughput by ensuring as many threads as possible are active at once.
The primary advantage of GPU scheduling lies in its ability to hide memory latency and execute a

massive number of operations concurrently. This results in significant improvements in throughput and
energy efficiency for Al workloads. Compared to CPUs, GPUs achieve higher performance-per-watt
ratios and drastically reduce training times for large -scale neural networks.

Warp scheduling determines which warps are issued on each SM at any given time. A warp is a group of
threads that execute the same instruction simultaneously on different data. When one warp stalls due to a
memory access delay, the scheduler switches to another ready warp to keep the pipelines utilized. This
scheduling minimizes idle cycles and sustains high throughput, which is essential in AI model training.
Recent work shows that warp scheduling can also improve memory behavior. For example, a warp
scheduling approach WaSP issues certain warps earlier to prefetch needed data and reduce cache misses
(Joseph et al., 2024). They report lower memory access latency and improved performance with minimal
hardware cost. This highlights how modern schedulers do more than hide stalls. They can proactively
shape memory access patterns to further increase utilization and throughput.

Tensor operations, such as matrix multiplication and convolution, dominate Al workloads. GPUs
execute these efficiently through vectorized instructions and specialized hardware like Tensor Cores.
These cores perform mixed-precision computations optimized for deep learning, allowing higher
performance without significant accuracy loss. Al workloads often consist of multiple kernels launched
simultaneously, each corresponding to different layers or computations within a model. Dynamic kernel
prioritization allows the scheduler to assign more resources to time-critical kernels, improving execution
efficiency. This flexibility enables GPUs to better manage concurrent workloads such as model training
and data preprocessing.

Figure 2: GPU architecture showing Streaming Multiprocessor executing warps in parallel.

! 1
! 1
! 1
Thread Block ! '
| Warp Warp Warp .
1
" 1
' 1 1
L 4-----!
Prioritized by Prioritized by Prioritized by

SM Warp Scheduler SM Warp Scheduler sMm Warp Scheduler

Streaming
Multiprocessor

MEMORY

Hybrid Scheduling Experimentation
4.1. Objective

This experiment evaluates the performance of hybrid CPU-GPU scheduling compared to CPU-only
and GPU-only approaches for Al workloads. The analysis examines workload scaling, composition,
resource constraints, and Al-specific scenarios, including training pipelines, inference serving,
research experiments, and production MLOps. Metrics such as throughput (tasks per second), GPU
utilization, and scheduling overhead are measured to determine under which conditions hybrid
scheduling provides measurable advantages. Lin, Wu & Bhattacharyya (2018) prove that the system
throughput is positively affected by the vectorization and scheduling methods of a hybrid CPU-GPU
architecture. The source code for the following experiment that is (Appendix A) is written in Rust 1.7
and includes a warp scheduler module with multiple policies.

The experimental benchmarks are organized into four test suites:

o Workload Scaling Suite: Evaluates 5, 10, 20, and 50 concurrent tasks using Round Robin
scheduling with a 0.3-second quantum.

e Workload Composition Suite: Compares Al-heavy, balanced, general-heavy, and mixed-ML
workloads under First-Come, First-Served (FCFS), Round Robin (0.4-second quantum), and
Preemptive Priority scheduling.

o Resource Constraint Suite: Examines high-end (16 CPU cores, 4096 GPU cores), mid-
range (8 CPU cores, 2048 GPU cores), budget (4 CPU cores, 1024 GPU cores), and CPU-
only (8 CPU cores, no GPU) configurations.

e Al-Workload Suite: Evaluates scheduling performance in representative scenarios (training,
inference, research, and production) using Preemptive Priority scheduling.

4.2. Analysis

Hybrid scheduling demonstrates substantial performance improvements over CPU-only execution
across all test scenarios. Throughput increases from 2.65 tasks/sec up to 17.1 tasks/sec in workload
scaling experiments with near-100% GPU utilization. In workload composition tests, Al-heavy
workloads reach 16.4 tasks/sec and non-Al-heavy workloads 7.1 tasks/sec. Resource constraint
testing shows consistent performance across hardware tiers: high-end systems achieve 11.62
tasks/sec, mid-range 11.51 tasks/sec, and budget configurations 10.92 tasks/sec as shown in Table 1.

Table 1: Throughput comparison across various resource constraints.

Configuration CPU (tasks/sec) GPU (tasks/sec) Hybrid (tasks/sec)

High-End 2.65 9.72 11.62
e 16 CPU cores
e 4096 GPU cores

Mid-Range 2.65 9.48 11.51
e & CPU cores
e 2048 GPU cores

Budget 2.65 8.79 10.92
e 4 CPU cores
e 1024 GPU cores

Al-specific experiments demonstrate that hybrid CPU-GPU scheduling significantly improves
throughput for compute-intensive workloads, demonstrated in Table 2. Training pipelines achieve a
3153.1% improvement over the CPU-only baseline, highlighting the benefit of GPU acceleration
combined with coordinated CPU execution. Research experiments reach a 1392.9% improvement,
showing that hybrid scheduling adapts effectively to workloads with moderate variability. Production
MLOps workloads attain a 2337.4% improvement, demonstrating both sustained throughput and
efficient resource utilization in operational scenarios. In contrast, inference serving records 10.84
tasks/sec, slightly below the CPU-only baseline of 11.54 tasks/sec, indicating that latency-sensitive
tasks may suffer from hybrid scheduling overhead.

Table 2: Throughput comparisons and observations across various Al scenarios.

Scenario CPU (tasks/sec) Hybrid (tasks/sec) Improvement
Training Pipeline 0.34 10.99 3153.1%
Inference Serving 11.54 10.84 -6.1%
Research Experiment 0.77 11.50 1392.9%
Production MLOps 0.46 11.15 2337.4%

Overall, the results indicate that hybrid scheduling effectively leverages both CPUs and GPUs to
maximize throughput and utilization in AI workloads. While highly effective for parallel, compute-
bound tasks, its performance trade-offs highlight the need for adaptive scheduling strategies in
latency-sensitive inference workloads.

5. Conclusion

This study analyzed CPU, GPU, and hybrid scheduling for AI workloads, highlighting their respective
strengths and limitations. Hybrid CPU-GPU scheduling combines CPU flexibility with GPU parallelism,
achieving substantial throughput gains in compute-bound scenarios while maintaining high GPU
utilization across hardware configurations. Latency-sensitive inference tasks may experience slight
overhead, indicating that hybrid scheduling is best suited for parallel, GPU-bound workloads. These
results emphasize the need for adaptive, workload-aware scheduling policies and point to future

opportunities in predictive scheduling and tighter CPU-GPU coordination to optimize heterogeneous Al
architectures.

6. References

Gebhart, M., Johnson, G., Tarjan, P., Keckler, S. W., Dally, W. J., Lindholm, E., & Skadron, K.
(2012). A hierarchical thread scheduler and register file for energy-efficient throughput
processors. ACM Transactions on Computer Systems, 30(2), 1-26.
https://doi.org/10.1145/2159431.2159434

Joseph, D., Aragoén, J. L., Parcerisa, J.-M., & Gonzalez, A. (2024). WaSP: Warp scheduling to mimic
prefetching in graphics workloads. arXiv. https://arxiv.org/abs/2404.06156

Lin, S., Wu, J., & Bhattacharyya, S. S. (2018). Memory-Constrained vectorization and scheduling of
dataflow graphs for hybrid CPU-GPU platforms. ACM Transactions on Embedded Computing
Systems, 17(2), Article 50. https://doi.org/10.1145/3157669

7. Appendix A: Experimentation Source Code

https://github.com/devenshah2018/task-scheduling

https://doi.org/10.1145/2159431.2159434

